Statistical learning theory and stochastic optimization : Ecole d'été de probabilités de Saint-Flour XXXI-2001

La 4e de couverture indique : "Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a goo...

Description complète

Détails bibliographiques
Auteurs principaux : Catoni Olivier (Auteur), Ecole d'été de probabilités de Saint-Flour
Collectivité auteur : Ecole d'été de probabilités de Saint-Flour 31 2001 Saint-Flour, Cantal (Auteur)
Autres auteurs : Picard Jean (Éditeur scientifique)
Format : Livre
Langue : anglais
Titre complet : Statistical learning theory and stochastic optimization : Ecole d'été de probabilités de Saint-Flour XXXI-2001 / [course presented by] Olivier Catoni; Editor, Jean Picard
Publié : Berlin : Springer , copyright 2004
Description matérielle : 1 vol. (VIII-272 p.)
Collection : Lecture notes in mathematics ; 1851
Ecole d'Eté de Probabilités de Saint-Flour ; 31
Sujets :
Documents associés : Autre format: Statistical Learning Theory and Stochastic Optimization
Description
Résumé : La 4e de couverture indique : "Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results."
Notes : Conférences données par Olivier Catoni à l'Ecole d'été de théorie des probabilités de Saint-Flour, du 8 au 25 juillet 2001. Les conférences données à cette date par les professeurs Tavaré et Zeitouni sont parues dans le volume 1837 de "Lecture notes in mathematics"
Bibliographie : Bibliogr. p. [261]-265. Index
ISBN : 3-540-22572-2