Compact Lie groups

Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie...

Description complète

Détails bibliographiques
Auteur principal : Sepanski Mark Roger (Auteur)
Format : Livre
Langue : anglais
Titre complet : Compact Lie groups / Mark R. Sepanski
Publié : New York, NY : Springer New York , 2007
Cham : Springer Nature
Collection : Graduate texts in mathematics (Internet) ; 235
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : chttps://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Reproduction de : Numérisation de l'édition de New York : Springer, cop. 2007
Sujets :
Documents associés : Autre format: Compact Lie Groups
Autre format: Compact Lie Groups
Autre format: Compact Lie Groups
Description
Résumé : Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Included is the construction of the Spin groups, Schur Orthogonality, the Peter Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel Weil Theorem. The necessary Lie algebra theory is also developed in the text with a streamlined approach focusing on linear Lie groups. Key Features: Provides an approach that minimizes advanced prerequisites Self-contained and systematic exposition requiring no previous exposure to Lie theory Advances quickly to the Peter Weyl Theorem and its corresponding Fourier theory Streamlined Lie algebra discussion reduces the differential geometry prerequisite and allows a more rapid transition to the classification and construction of representations Exercises sprinkled throughout This beginning graduate-level text, aimed primarily at Lie Groups courses and related topics, assumes familiarity with elementary concepts from group theory, analysis, and manifold theory. Students, research mathematicians, and physicists interested in Lie theory will find this text very useful.
ISBN : 978-0-387-49158-5
DOI : 10.1007/978-0-387-49158-5