Ideals, varieties, and algorithms : an introduction to computational algebraic geometry and commutative algebra

Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manipulated? The solutions o...

Description complète

Détails bibliographiques
Auteurs principaux : Cox David A. (Auteur), Little John B. (Auteur), O'Shea Donal (Auteur)
Format : Livre
Langue : anglais
Titre complet : Ideals, varieties, and algorithms : an introduction to computational algebraic geometry and commutative algebra / David Cox, John Little, Donal O Shea.
Édition : 3rd ed. 2007.
Publié : New York, NY : Springer New York , [20..]
Cham : Imprint: Springer
Springer Nature
Collection : Undergraduate texts in mathematics (Internet)
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Sujets :
Documents associés : Autre format: Ideals, varieties, and algorithms
LEADER 06146clm a2200793 4500
001 PPN123145244
003 http://www.sudoc.fr/123145244
005 20241001154500.0
010 |a 978-0-387-35651-8  |b En ligne 
017 7 0 |a 10.1007/978-0-387-35651-8  |2 DOI 
035 |a (OCoLC)690289153 
035 |a Springer978-0-387-35651-8 
035 |a SPRINGER_EBOOKS_LN_PLURI_10.1007/978-0-387-35651-8 
035 |a Springer-11649-978-0-387-35651-8 
100 |a 20080410f20 k y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a US 
105 |a a a 001yy 
135 |a dr||||||||||| 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c c  |2 rdamedia 
182 1 |6 z01  |a b 
183 |6 z01  |a ceb  |2 RDAfrCarrier 
200 1 |a Ideals, varieties, and algorithms  |e an introduction to computational algebraic geometry and commutative algebra  |f David Cox, John Little, Donal O Shea. 
205 |a 3rd ed. 2007. 
214 0 |a New York, NY  |c Springer New York  |c Imprint: Springer 
214 2 |a Cham  |c Springer Nature  |d [20..] 
225 0 |a Undergraduate Texts in Mathematics  |x 2197-5604 
320 |a Bibliogr. p. 535-539 de l'édition imprimée. Index 
330 |a Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manipulated? The solutions of a system of polynomial equations form a geometric object called a variety; the corresponding algebraic object is an ideal. There is a close relationship between ideals and varieties which reveals the intimate link between algebra and geometry. Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. The algorithms to answer questions such as those posed above are an important part of algebraic geometry. Although the algorithmic roots of algebraic geometry are old, it is only in the last forty years that computational methods have regained their earlier prominence. New algorithms, coupled with the power of fast computers, have led to both theoretical advances and interesting applications, for example in robotics and in geometric theorem proving. In addition to enhancing the text of the second edition, with over 200 pages reflecting changes to enhance clarity and correctness, this third edition of Ideals, Varieties and Algorithms includes: A significantly updated section on Maple in Appendix C Updated information on AXIOM, CoCoA, Macaulay 2, Magma, Mathematica and SINGULAR A shorter proof of the Extension Theorem presented in Section 6 of Chapter 3 From the 2nd Edition: "I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures, and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry." -The American Mathematical Monthly 
359 2 |b Preface to the First Edition  |b Preface to the Second Edition  |b Preface to the Third Edition  |b Geometry, Algebra, and Algorithms  |b Groebner Bases  |b Elimination Theory  |b The Algebra-Geometry Dictionary  |b Polynomial and Rational Functions on a Variety  |b Robotics and Automatic Geometric Theorem Proving  |b Invariant Theory of Finite Groups  |b Projective Algebraic Geometry  |b The Dimension of a Variety  |b Appendix A. Some Concepts from Algebra  |b Appendix B. Pseudocode  |b Appendix C. Computer Algebra Systems  |b Appendix D. Independent Projects  |b References  |b Index 
371 0 |a Accès en ligne pour les établissements français bénéficiaires des licences nationales 
371 0 |a Accès soumis à abonnement pour tout autre établissement 
371 1 |a Conditions particulières de réutilisation pour les bénéficiaires des licences nationales  |c https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 
410 | |0 159350816  |t Undergraduate texts in mathematics (Internet)  |x 2197-5604 
452 | |0 11397986X  |t Ideals, varieties, and algorithms  |o an introduction to computational algebraic geometry and commutative algebra  |f David Cox, John Little, Donal O'Shea  |e 3rd edition  |d 2007  |c New-York  |n Springer  |p 1 vol. (XV-551 p.)  |s Undergraduate texts in mathematics  |y 978-0-387-35650-1 
606 |3 PPN027551261  |a Complexité de calcul (informatique)  |2 rameau 
606 |3 PPN027974979  |a Algèbres commutatives  |3 PPN027234886  |x Informatique  |2 rameau 
606 |3 PPN027255093  |a Variétés algébriques  |2 rameau 
606 |3 PPN027839281  |a Idéaux (algèbre)  |2 rameau 
606 |3 PPN027228002  |a Géométrie algébrique  |3 PPN027234886  |x Informatique  |2 rameau 
610 1 |a Mathematics 
610 2 |a Algebraic Geometry 
610 2 |a Commutative Rings and Algebras 
610 2 |a Mathematical Logic and Foundations 
610 2 |a Mathematical Software 
615 |a @Mathematics and Statistics  |n 11649  |2 Springer 
676 |a 516.35  |v 23 
680 |a QA564-609 
686 |a 14-01  |c 2010  |2 msc 
686 |a 13-01  |c 2010  |2 msc 
686 |a 13Pxx  |c 2010  |2 msc 
686 |a 13P10  |c 2010  |2 msc 
686 |a 14Qxx  |c 2010  |2 msc 
686 |a I.1  |2 acm 
700 1 |3 PPN031763839  |a Cox  |b David A.  |f 1948-....  |4 070 
701 1 |3 PPN031763863  |a Little  |b John B.  |f 1956-....  |4 070 
701 1 |3 PPN03176388X  |a O'Shea  |b Donal  |f 1952-....  |4 070 
801 3 |a FR  |b Abes  |c 20240911  |g AFNOR 
801 1 |a DE  |b Springer  |c 20200821  |g AACR2 
856 4 |q PDF  |u https://doi.org/10.1007/978-0-387-35651-8  |z Accès sur la plateforme de l'éditeur 
856 4 |u https://revue-sommaire.istex.fr/ark:/67375/8Q1-ZV5678TJ-4  |z Accès sur la plateforme Istex 
856 4 |5 441099901:830843736  |u https://budistant.univ-nantes.fr/login?url=https://doi.org/10.1007/978-0-387-35651-8 
915 |5 441099901:830843736  |b SPRING18-00010 
930 |5 441099901:830843736  |b 441099901  |j g 
991 |5 441099901:830843736  |a Exemplaire créé en masse par ITEM le 30-09-2024 15:58 
997 |a NUM  |b SPRING18-00010  |d NUMpivo  |e EM  |s d 
998 |a 977609