Laplacian Eigenvectors of Graphs : Perron-Frobenius and Faber-Krahn Type Theorems

Eigenvectors of graph Laplacians have not, to date, been the subject of expository articles and thus they may seem a surprising topic for a book. The authors propose two motivations for this new LNM volume: (1) There are fascinating subtle differences between the properties of solutions of Schröding...

Description complète

Détails bibliographiques
Auteurs principaux : Biyikoğlu Türker (Auteur), Stadler Peter F. (Auteur), Leydold Josef (Auteur)
Format : Livre
Langue : anglais
Titre complet : Laplacian Eigenvectors of Graphs : Perron-Frobenius and Faber-Krahn Type Theorems / Türker Biyikoglu, Josef Leydold, Peter F. Stadler.
Édition : 1st ed. 2007.
Publié : Berlin, Heidelberg : Springer Berlin Heidelberg , [20..]
Cham : Springer Nature
Collection : Lecture notes in mathematics (Internet) ; 1915
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : Graph Laplacians. Eigenfunctions and Nodal Domains. Nodal Domain Theorems for Special Graph Classes. Computational Experiments. Faber-Krahn Type Inequalities
Sujets :
Documents associés : Autre format: Laplacian eigenvectors of graphs
Autre format: Laplacian Eigenvectors of Graphs
Autre format: Laplacian eigenvectors of graphs
Description
Résumé : Eigenvectors of graph Laplacians have not, to date, been the subject of expository articles and thus they may seem a surprising topic for a book. The authors propose two motivations for this new LNM volume: (1) There are fascinating subtle differences between the properties of solutions of Schrödinger equations on manifolds on the one hand, and their discrete analogs on graphs. (2) "Geometric" properties of (cost) functions defined on the vertex sets of graphs are of practical interest for heuristic optimization algorithms. The observation that the cost functions of quite a few of the well-studied combinatorial optimization problems are eigenvectors of associated graph Laplacians has prompted the investigation of such eigenvectors. The volume investigates the structure of eigenvectors and looks at the number of their sign graphs ("nodal domains"), Perron components, graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology
Notes : L'impression du document génère 120 p.
Bibliographie : Bibliogr. Index
ISBN : 978-3-540-73510-6
DOI : 10.1007/978-3-540-73510-6