Non-spectral Asymptotic Analysis of One-Parameter Operator Semigroups
In this book, non-spectral methods are presented and discussed that have been developed over the last two decades for the investigation of asymptotic behavior of one-parameter operator semigroups in Banach spaces. This concerns in particular Markov semigroups in L1-spaces, motivated by applications...
Auteur principal : | |
---|---|
Format : | Livre |
Langue : | anglais |
Titre complet : | Non-spectral Asymptotic Analysis of One-Parameter Operator Semigroups / Eduard Yu. Emel yanov. |
Édition : | 1st ed. 2007. |
Publié : |
Basel :
Birkhäuser Basel
, [20..] Cham : Springer Nature |
Collection : | Operator theory (Online) ; 173 |
Accès en ligne : |
Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr |
Note sur l'URL : | Accès sur la plateforme de l'éditeur Accès sur la plateforme Istex |
Condition d'utilisation et de reproduction : | Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 |
Contenu : | Elementary theory of one-parameter semigroups. Positive semigroups in ordered Banach spaces. Positive semigroups in L1-spaces. |
Sujets : | |
Documents associés : | Autre format:
Non-spectral asymptotic analysis of one-parameter operator semigroups Autre format: Non-spectral Asymptotic Analysis of One-Parameter Operator Semigroups Autre format: Non-spectral asymptotic analysis of one-parameter operator semigroups |
LEADER | 04447clm a2200745 4500 | ||
---|---|---|---|
001 | PPN12316589X | ||
003 | http://www.sudoc.fr/12316589X | ||
005 | 20241001154700.0 | ||
010 | |a 978-3-7643-8114-1 | ||
017 | 7 | 0 | |a 10.1007/978-3-7643-8114-1 |2 DOI |
035 | |a (OCoLC)652713252 | ||
035 | |a Springer978-3-7643-8114-1 | ||
035 | |a SPRINGER_EBOOKS_LN_PLURI_10.1007/978-3-7643-8114-1 | ||
035 | |a Springer-11649-978-3-7643-8114-1 | ||
100 | |a 20080410f20 k y0frey0103 ba | ||
101 | 0 | |a eng |2 639-2 | |
102 | |a CH | ||
105 | |a y a 000yy | ||
135 | |a dr||||||||||| | ||
181 | |6 z01 |c txt |2 rdacontent | ||
181 | 1 | |6 z01 |a i# |b xxxe## | |
182 | |6 z01 |c c |2 rdamedia | ||
182 | 1 | |6 z01 |a b | |
183 | |6 z01 |a ceb |2 RDAfrCarrier | ||
200 | 1 | |a Non-spectral Asymptotic Analysis of One-Parameter Operator Semigroups |f Eduard Yu. Emel yanov. | |
205 | |a 1st ed. 2007. | ||
214 | 0 | |a Basel |c Birkhäuser Basel | |
214 | 2 | |a Cham |c Springer Nature |d [20..] | |
225 | 0 | |a Operator Theory: Advances and Applications |x 2296-4878 |v 173 | |
303 | |a L'impression du document génère 180 p. | ||
320 | |a Bibliogr. | ||
327 | 1 | |a Elementary theory of one-parameter semigroups |a Positive semigroups in ordered Banach spaces |a Positive semigroups in L1-spaces. | |
330 | |a In this book, non-spectral methods are presented and discussed that have been developed over the last two decades for the investigation of asymptotic behavior of one-parameter operator semigroups in Banach spaces. This concerns in particular Markov semigroups in L1-spaces, motivated by applications to probability theory and dynamical systems. Recently many results on the asymptotic behaviour of Markov semigroups were extended to positive semigroups in Banach lattices with order-continuous norm, and to positive semigroups in non-commutative L1-spaces. Related results, historical notes, exercises, and open problems accompany each chapter. The book is directed to graduate students and researchers working in operator theory, particularly those interested in C0-semigroups in classical and non-commutative L1-spaces, in mean ergodic theory, and in dynamical systems. | ||
371 | 0 | |a Accès en ligne pour les établissements français bénéficiaires des licences nationales | |
371 | 0 | |a Accès soumis à abonnement pour tout autre établissement | |
371 | 1 | |a Conditions particulières de réutilisation pour les bénéficiaires des licences nationales |c https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 | |
410 | | | |0 171505859 |t Operator theory (Online) |x 2296-4878 |v 173 | |
452 | | | |0 114176221 |t Non-spectral asymptotic analysis of one-parameter operator semigroups |f Eduard Yu. Emel'yanov |c Basel |n Birkhäuser |d 2007 |p 1 vol. (VIII-174 p.) |s Operator theory, advances and applications |y 3-7643-8095-0 | |
452 | | | |t Non-spectral Asymptotic Analysis of One-Parameter Operator Semigroups |b Texte imprimé |y 9783764391799 | |
452 | | | |0 114176221 |t Non-spectral asymptotic analysis of one-parameter operator semigroups |f Eduard Yu. Emel'yanov |c Basel |n Birkhäuser |d 2007 |p 1 vol. (VIII-174 p.) |s Operator theory, advances and applications |y 3-7643-8095-0 | |
606 | |3 PPN031284701 |a Semigroupes d'opérateurs |2 rameau | ||
606 | |3 PPN027391124 |a Espaces de Banach |2 rameau | ||
606 | |3 PPN028222598 |a Espaces Lp |2 msc | ||
610 | 1 | |a Operator Theory | |
610 | 2 | |a Functional Analysis | |
610 | 2 | |a Measure and Integration | |
615 | |a Mathematics and Statistics |n 11649 |2 Springer | ||
676 | |a 515.724 |v 23 | ||
680 | |a QA329-329.9 | ||
686 | |a 47D06 |c 2010 |2 msc | ||
686 | |a 47A35 |c 2010 |2 msc | ||
686 | |a 47B60 |c 2010 |2 msc | ||
686 | |a 47B65 |c 2010 |2 msc | ||
686 | |a 46L55 |c 2010 |2 msc | ||
700 | 1 | |3 PPN114176639 |a Emelʹyanov |b Eduard Yu |4 070 | |
801 | 3 | |a FR |b Abes |c 20240911 |g AFNOR | |
801 | 1 | |a DE |b Springer |c 20211020 |g AACR2 | |
856 | 4 | |q PDF |u https://doi.org/10.1007/978-3-7643-8114-1 |z Accès sur la plateforme de l'éditeur | |
856 | 4 | |u https://revue-sommaire.istex.fr/ark:/67375/8Q1-9TNMPL3N-C |z Accès sur la plateforme Istex | |
856 | 4 | |5 441099901:83084693X |u https://budistant.univ-nantes.fr/login?url=https://doi.org/10.1007/978-3-7643-8114-1 | |
915 | |5 441099901:83084693X |b SPRING18-00288 | ||
930 | |5 441099901:83084693X |b 441099901 |j g | ||
991 | |5 441099901:83084693X |a Exemplaire créé en masse par ITEM le 30-09-2024 16:00 | ||
997 | |a NUM |b SPRING18-00288 |d NUMpivo |e EM |s d | ||
998 | |a 977759 |