Theory of Probability and Random Processes

A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of the content of this book It is structured in two parts: the first part providing a detailed discussion of Lebesgue integration, Markov...

Description complète

Détails bibliographiques
Auteurs principaux : Koralov Leonid B. (Auteur), Sinaj Âkov Grigorʹevič (Auteur)
Format : Livre
Langue : anglais
Titre complet : Theory of Probability and Random Processes / Leonid B. Koralov, Yakov G. Sinai.
Édition : 2nd ed. 2007.
Publié : Berlin, Heidelberg : Springer Berlin Heidelberg , [20..]
Cham : Springer Nature
Collection : Universitext (Berlin. Internet)
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Reproduction de : Version électronique de la seconde édition datant de 2007
Contenu : Probability Theory. Random Variables and Their Distributions. Sequences of Independent Trials. Lebesgue Integral and Mathematical Expectation. Conditional Probabilities and Independence. Markov Chains with a Finite Number of States. Random Walks on the Lattice ?d. Laws of Large Numbers. Weak Convergence of Measures. Characteristic Functions. Limit Theorems. Several Interesting Problems. Random Processes. Basic Concepts. Conditional Expectations and Martingales. Markov Processes with a Finite State Space. Wide-Sense Stationary Random Processes. Strictly Stationary Random Processes. Generalized Random Processes. Brownian Motion. Markov Processes and Markov Families. Stochastic Integral and the Ito Formula. Stochastic Differential Equations. Gibbs Random Fields
Sujets :
Documents associés : Autre format: Theory of probability and random processes
Autre format: Theory of Probability and Random Processes
Description
Résumé : A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of the content of this book It is structured in two parts: the first part providing a detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. The second part includes the theory of stationary random processes, martingales, generalized random processes, Brownian motion, stochastic integrals, and stochastic differential equations. One section is devoted to the theory of Gibbs random fields. This material is essential to many undergraduate and graduate courses. The book can also serve as a reference for scientists using modern probability theory in their research
Notes : L'impression du document génère 348 p.
Bibliographie : Index
ISBN : 978-3-540-68829-7
DOI : 10.1007/978-3-540-68829-7