History of Banach Spaces and Linear Operators

Named for Banach, one of the great mathematicians of the twentieth century, the concept of Banach spaces figures prominently in the study of functional analysis with applications to integral and differential equations, approximation theory, harmonic analysis, convex geometry, numerical mathematics,...

Description complète

Détails bibliographiques
Auteur principal : Pietsch Albrecht (Auteur)
Format : Livre
Langue : anglais
Titre complet : History of Banach Spaces and Linear Operators / Albrecht Pietsch.
Édition : 1st ed. 2007.
Publié : Boston, MA : Birkhäuser Boston , [20..]
Cham : Springer Nature
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : Contient de courtes biographies sur Frigyes Riesz, Eduard Helly, Stefan Banach, John von Neumann, Mark Grigorievich Krein, Alexandre Grothendieck, Nicolas Bourbaki
Sujets :
Documents associés : Autre format: History of banach spaces and linear operators
Description
Résumé : Named for Banach, one of the great mathematicians of the twentieth century, the concept of Banach spaces figures prominently in the study of functional analysis with applications to integral and differential equations, approximation theory, harmonic analysis, convex geometry, numerical mathematics, analytic complexity, and probability theory. Written by a distinguished specialist in functional analysis, this book presents a comprehensive treatment of the history of Banach spaces and (abstract bounded) linear operators. While other historical texts on the subject focus on developments before 1950, this one is mainly devoted to the second half of the 20th century. Banach space theory is presented in a broad mathematical context, using tools from such areas as set theory, topology, algebra, combinatorics, probability theory, and logic. Equal emphasis is given to both spaces and operators. Numerous examples and counterexamples elucidate the scope of the underlying concepts. As a stimulus for further research, the text also contains many problems which have not been previously solved. The book may serve as a reference for researchers and as an introduction for graduate students who want to learn Banach space theory with some historical flavor. Helpful information is also provided for professors preparing their own lectures on functional analysis.
Notes : L'impression du document génère 878 p.
Bibliographie : Bibliogr. Index
ISBN : 978-0-8176-4596-0
DOI : 10.1007/978-0-8176-4596-0