An Invitation to Quantum Cohomology : Kontsevich s Formula for Rational Plane Curves
This book is an elementary introduction to stable maps and quantum cohomology, starting with an introduction to stable pointed curves, and culminating with a proof of the associativity of the quantum product. The viewpoint is mostly that of enumerative geometry, and the red thread of the exposition...
Auteurs principaux : | , |
---|---|
Autres auteurs : | , , |
Format : | Livre |
Langue : | anglais |
Titre complet : | An Invitation to Quantum Cohomology : Kontsevich s Formula for Rational Plane Curves / Joachim kock, Israel Vainsencher |
Édition : | 1st ed. 2007. |
Publié : |
Boston, MA :
Birkhäuser Boston
, 2007 |
Collection : | Progress in mathematics (Boston, Mass. Online) ; 249 |
Accès en ligne : |
Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr |
Note sur l'URL : | Accès sur la plateforme de l'éditeur Accès sur la plateforme de l'éditeur |
Reproduction de : | Numérisation de l'édition de Boston ; Basel ; Berlin : Birkhäuser , cop. 2007 |
Contenu : | Prologue: Warming Up with Cross Ratios, and the Definition of Moduli Space. Stable n-pointed Curves. Stable Maps. Enumerative Geometry via Stable Maps. Gromov Witten Invariants. Quantum Cohomology |
Sujets : | |
Documents associés : | Autre format:
An invitation to quantum cohomology Autre format: An Invitation to Quantum Cohomology |
Résumé : | This book is an elementary introduction to stable maps and quantum cohomology, starting with an introduction to stable pointed curves, and culminating with a proof of the associativity of the quantum product. The viewpoint is mostly that of enumerative geometry, and the red thread of the exposition is the problem of counting rational plane curves. Kontsevich's formula is initially established in the framework of classical enumerative geometry, then as a statement about reconstruction for Gromov Witten invariants, and finally, using generating functions, as a special case of the associativity of the quantum product. Emphasis is given throughout the exposition to examples, heuristic discussions, and simple applications of the basic tools to best convey the intuition behind the subject. The book demystifies these new quantum techniques by showing how they fit into classical algebraic geometry. Some familiarity with basic algebraic geometry and elementary intersection theory is assumed. Each chapter concludes with some historical comments and an outline of key topics and themes as a guide for further study, followed by a collection of exercises that complement the material covered and reinforce computational skills. As such, the book is ideal for self-study, as a text for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory. The book will prove equally useful to graduate students in the classroom setting as to researchers in geometry and physics who wish to learn about the subject |
---|---|
Notes : | Description d'après consultation du 2010-10-23 L'impression du document génère 159 p. Titre provenant de la page de titre du document numérisé |
Configuration requise : | Nécessite un lecteur de fichier PDF |
ISBN : | 978-0-8176-4495-6 |
DOI : | 10.1007/978-0-8176-4495-6 |