Guts of Surfaces and the Colored Jones Polynomial
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of...
Auteurs principaux : | , , |
---|---|
Format : | Livre |
Langue : | anglais |
Titre complet : | Guts of Surfaces and the Colored Jones Polynomial / David Futer, Efstratia Kalfagianni, Jessica Purcell. |
Édition : | 1st ed. 2013. |
Publié : |
Berlin, Heidelberg :
Springer Berlin Heidelberg
, [20..] Cham : Springer Nature |
Collection : | Lecture notes in mathematics (Internet) ; 2069 |
Accès en ligne : |
Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr |
Note sur l'URL : | Accès sur la plateforme de l'éditeur Accès sur la plateforme Istex |
Condition d'utilisation et de reproduction : | Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 |
Sujets : | |
Documents associés : | Autre format:
Guts of surfaces and the colored Jones polynomial Autre format: Guts of Surfaces and the Colored Jones Polynomial |
Résumé : | This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials.Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants |
---|---|
Notes : | L'impression du document génère 178 p. |
Bibliographie : | Bibliogr. Index |
ISBN : | 978-3-642-33302-6 |
DOI : | 10.1007/978-3-642-33302-6 |