New structure learning algorithms and evaluation methods for large dynamic Bayesian networks

Les réseaux bayésiens dynamiques (RBD) sont une classe de modèles graphiques probabilistes qui est devenu un outil standard pour la modélisation de divers phénomènes stochastiques variant dans le temps. A cause de la complexité induite par l ajout de la dimension temporelle, l apprentissage de la st...

Description complète

Détails bibliographiques
Auteurs principaux : Trabelsi Ghada (Auteur), Leray Philippe (Directeur de thèse), Alimi Mohamed Adel (Directeur de thèse), Piechowiak Sylvain (Président du jury de soutenance, Membre du jury), Ben Amor Nahla (Rapporteur de la thèse, Membre du jury)
Collectivités auteurs : Université de Nantes 1962-2021 (Organisme de soutenance), Université de Nantes Faculté des sciences et des techniques (Organisme de soutenance), École doctorale Sciences et technologies de l'information et mathématiques Nantes (Organisme de soutenance), Laboratoire d Informatique de Nantes Atlantique (UMR 6241) Nantes (Ecole doctorale associée à la thèse)
Format : Thèse ou mémoire
Langue : anglais
Titre complet : New structure learning algorithms and evaluation methods for large dynamic Bayesian networks / Ghada Trabelsi; sous la direction de Philippe Leray ; co-directeur de thèse Adel. M.Alimi
Publié : [Lieu de publication inconnu] : [éditeur inconnu] , 2014
Accès en ligne : Accès Nantes Université
Note de thèse : Thèse de doctorat : Informatique : Nantes : 2013
Sujets :
Documents associés : Reproduction de: New structure learning algorithms and evaluation methods for large dynamic Bayesian networks
LEADER 05512clm a2200589 4500
001 PPN192357735
003 http://www.sudoc.fr/192357735
005 20240829055200.0
029 |a FR  |b 2013NANT2080 
035 |a (OCoLC)1247895486 
100 |a 20160405d2013 k y|frey0103 ba 
101 0 |a eng  |d fre  |d eng  |2 639-2 
102 |a FR 
105 |a ||||v 00||| 
135 |a |r||||||||||| 
181 1 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 1 |6 z01  |c c  |2 rdamedia 
182 1 |6 z01  |a b 
200 1 |a New structure learning algorithms and evaluation methods for large dynamic Bayesian networks  |f Ghada Trabelsi  |g sous la direction de Philippe Leray ; co-directeur de thèse Adel. M.Alimi 
210 |a [Lieu de publication inconnu]  |c [éditeur inconnu]  |d 2014 
230 |a Données textuelles 
314 |a Ecole(s) Doctorale(s) : École doctorale Sciences et technologies de l'information et mathématiques (STIM) (Nantes) 
314 |a Partenaire de recherche : Laboratoire d Informatique de Nantes Atlantique (UMR 6241) (LINA) (Nantes) (Laboratoire) 
314 |a Autre(s) contribution(s) : Sylvain Piechowiak (Président du jury) ; Marc Gelgon (Membre du jury) ; Nahia Ben Amor, Ioannis Tsamardinos (Rapporteur(s)) 
320 |a Références bibliographiques 
325 1 |a La thèse papier est la seule version officielle 
328 |b Thèse de doctorat  |c Informatique  |e Nantes  |d 2013 
330 |a Les réseaux bayésiens dynamiques (RBD) sont une classe de modèles graphiques probabilistes qui est devenu un outil standard pour la modélisation de divers phénomènes stochastiques variant dans le temps. A cause de la complexité induite par l ajout de la dimension temporelle, l apprentissage de la structure DBN est une tâche très complexe. Les algorithmes existants sont des adaptations des algorithmes d apprentissage de structure pour les RB basés sur score mais sont souvent limitées lorsque le nombre de variables est élevée. Une autre limitation pour les études d apprentissage de la structure des RBD, ils utilisent leurs propres Benchmarks et techniques pour l'évaluation. Le problème dans le cas dynamique, nous ne trouvons pas de travaux antérieurs qui fournissent des détails sur les réseaux et les indicateurs de comparaison utilisés. Nous nous concentrons dans ce projet à l apprentissage de la structure des RBD et ses méthodes d évaluation avec respectivement une autre famille des algorithmes d apprentissage de la structure, les méthodes de recherche locale, et une nouvelle approche de génération des grandes standard RBD et un métrique d évaluation. Nous illustrons l intérêt et de ces méthodes avec des résultats expérimentaux. 
330 |a Dynamic Bayesian networks (DBNs) are a class of probabilistic graphical models that has become a standard tool for modeling various stochastic time-varying phenomena. Probabilistic graphical models such as 2-Time slice BN (2TBNs) are the most used and popular models for DBNs. Because of the complexity induced by adding the temporal dimension, DBN structure learning is a very complex task. Existing algorithms are adaptations of score-based BN structure learning algorithms but are often limited when the number of variables is high. Another limitation of DBN structure learning studies, they use their own benchmarks and techniques for evaluation. The problem in the dynamic case is that we don t find previous works that provide details about used networks and indicators of comparison. We focus in this project on DBN structure learning and its methods of evaluation with respectively another family of structure learning algorithms, local search methods, known by its scalability and a novel approach to generate large standard DBNs and metric of evaluation. We illustrate the interest of these methods with experimental results. 
455 | |0 192357530  |t New structure learning algorithms and evaluation methods for large dynamic Bayesian networks  |f Ghada Trabelsi  |c [Lieu de publication inconnu]  |n [éditeur inconnu]  |d 2014  |p 1 vol. (pagination multiple) 
541 | |a Nouveaux algorithmes d apprentissage et méthodes d évaluation pour les grands réseaux bayésiens dynamiques  |z fre 
606 |3 PPN029753090  |a Statistique bayésienne  |2 rameau 
606 |3 PPN027796841  |a Méthode comparative  |2 rameau 
608 |3 PPN027253139  |a Thèses et écrits académiques  |2 rameau 
610 0 |a Structure d apprentissage 
610 0 |a Méthodes de recherche locale 
686 |a 510  |2 TEF 
700 1 |3 PPN192356569  |a Trabelsi  |b Ghada  |f 1980-....  |4 070 
701 1 |3 PPN116302011  |a Leray  |b Philippe  |c informaticien  |4 727 
701 1 |3 PPN150913524  |a Alimi  |b Mohamed Adel  |4 727 
701 1 |3 PPN119171821  |a Piechowiak  |b Sylvain  |f 1963-....  |4 956  |4 555 
701 1 |3 PPN166082090  |a Ben Amor  |b Nahla  |f 1973-....  |4 958  |4 555 
711 0 2 |3 PPN026403447  |a Université de Nantes  |c 1962-2021  |4 295 
711 0 2 |3 PPN033124884  |a Université de Nantes  |b Faculté des sciences et des techniques  |4 295 
711 0 2 |3 PPN134103211  |a École doctorale Sciences et technologies de l'information et mathématiques  |c Nantes  |4 295  |4 996 
711 0 2 |3 PPN137062508  |a Laboratoire d Informatique de Nantes Atlantique (UMR 6241)  |c Nantes  |4 981  |4 981 
801 3 |a FR  |b Abes  |c 20230206  |g AFNOR 
856 4 |q PDF  |u https://archive.bu.univ-nantes.fr/pollux/show/show?id=44f085b8-0793-4307-b11f-b84d376d296f  |2 accès au texte intégral de la thèse 
979 |a SCI 
930 |5 441092104:551769742  |b 441092104  |j g 
998 |a 687040