Introduction à la théorie générale des processus et intégrales stochastiques : cours et exercices corrigés

La 4e de couverture indique : "La théorie générale des processus et de l intégrale stochastiques est rarement enseignée en master 1 ou en école d ingénieurs. Cependant la modélisation stochastique a de plus en plus souvent besoin de modèles discontinus faisant appel à cette théorie. Par ailleur...

Description complète

Détails bibliographiques
Auteur principal : Laleuf Jean-Claude (Auteur)
Format : Livre
Langue : français
Titre complet : Introduction à la théorie générale des processus et intégrales stochastiques : cours et exercices corrigés / Jean-Claude Laleuf
Publié : Paris : Ellipses , C 2016
Description matérielle : 1 vol. (331 p.)
Collection : Références sciences
Sujets :
LEADER 03376cam a2200469 4500
001 PPN193889633
003 http://www.sudoc.fr/193889633
005 20240604055500.0
010 |a 978-2-340-01154-0  |b br.  |d 44 EUR  |z 9782340-011540 
035 |a (OCoLC)952020498 
073 1 |a 9782340011540 
100 |a 20160621h20162016k y0frey0103 ba 
101 0 |a fre  |2 639-2 
102 |a FR 
105 |a y a 001yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 |6 z01  |a nga  |2 RDAfrCarrier 
200 1 |a Introduction à la théorie générale des processus et intégrales stochastiques  |e cours et exercices corrigés  |f Jean-Claude Laleuf 
214 0 |a Paris  |c Ellipses 
214 4 |d C 2016 
215 |a 1 vol. (331 p.)  |c couv. ill. en coul.  |d 24 cm 
225 2 |a Références sciences 
339 |a Un cours d'introduction et des exercices corrigés concernant le calcul stochastique. ©Electre 2023 
320 |a Bibliogr. p. [327]. Index 
330 |a La 4e de couverture indique : "La théorie générale des processus et de l intégrale stochastiques est rarement enseignée en master 1 ou en école d ingénieurs. Cependant la modélisation stochastique a de plus en plus souvent besoin de modèles discontinus faisant appel à cette théorie. Par ailleurs, si on extrait des grands traités les seules notions de théorie générale nécessaires à la construction de l intégrale stochastique et à l obtention de la formule d Ito, on aboutit à un texte qui peut être à la fois de taille raisonnable et abordable au niveau du master. Rendre plus accessible un domaine jusque-là réservé aux seuls spécialistes, par des démonstrations très détaillées et commentées et la présence de nombreux exercices corrigés, est l ambition de cet ouvrage. Après une introduction situant le contexte et donnant les grandes lignes de la construction de l intégrale stochastique, trois chapitres présentent des rappels et des compléments sur l intégration classique, les martingales et la topologie générale. Le vrai point de départ de la théorie est le théorème de capacité de Choquet. Les théorèmes de sections optionnelles et prévisibles de Meyer en découlent facilement. On peut alors définir les projections optionnelles et prévisibles, établir leurs propriétés et démontrer le célèbre théorème de Doob-Meyer. Ce dernier résultat, avec celui concernant la décomposition des martingales locales, constitue la clé de la définition de l intégrale stochastique. La covariation des semimartingales et la formule d Ito (donc le calcul stochastique) dérivent à leur tour de l existence et des propriétés de l intégrale stochastique." 
410 | |0 165256990  |t Références sciences  |x 2260-8044 
606 |3 PPN027241300  |a Processus stochastiques  |2 rameau 
606 |3 PPN031444784  |a Intégrales stochastiques  |2 rameau 
608 |3 PPN03020934X  |a Manuels d'enseignement supérieur  |2 rameau 
608 |3 PPN027790517  |a Problèmes et exercices  |2 rameau 
676 |a 519.230 76  |v 22  |z fre 
680 |a QA274 
700 1 |3 PPN034432957  |a Laleuf  |b Jean-Claude  |f 19..-....  |4 070 
801 3 |a FR  |b Electre  |c 20210507  |g AFNOR 
801 3 |a FR  |b Abes  |c 20210426  |g AFNOR 
979 |a STN 
930 |5 441842101:815976011  |b 441842101  |j u 
998 |a 952939