Deep learning

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that...

Description complète

Détails bibliographiques
Auteurs principaux : Goodfellow Ian J. (Auteur), Bengio Yoshua (Auteur), Courville Aaron C. (Auteur)
Format : Livre
Langue : anglais
Titre complet : Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville
Publié : Cambridge (Mass.), London : the MIT Press , C 2016
Description matérielle : 1 vol. (XXII-775 p.)
Collection : Adaptative computation and machine learning series
Sujets :
Documents associés : Autre format: Deep learning
LEADER 03768cam a2200649 4500
001 PPN197682979
003 http://www.sudoc.fr/197682979
005 20230710130900.0
010 |a 978-0-262-03561-3  |b rel. 
035 |a (OCoLC)968780153 
073 1 |a 9780262035613 
100 |a 20170117h20162016k y0frey0103 ba 
101 0 |a eng  |e eng  |2 639-2 
102 |a US 
105 |a a a 001yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 1 |6 z01  |a nga  |2 RDAfrCarrier 
200 1 |a Deep learning  |f Ian Goodfellow, Yoshua Bengio and Aaron Courville 
214 0 |a Cambridge (Mass.)  |a London  |c the MIT Press 
214 4 |d C 2016 
215 |a 1 vol. (XXII-775 p.)  |c ill. en noir et en coul., graph., couv. ill. en coul.  |d 24 cm 
225 0 |a Adaptive computation and machine learning 
300 |a Liste des errata sur le lien suivant https://www.deeplearningbook.org/ 
320 |a Bibliogr. p. [711]-766. Index 
330 |a Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones ; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.  |2 4e de couv. 
359 2 |b I. Applied math and machine learning basics  |c 2. Linear algebra  |c 3. Probability and information theory  |c 4. Numerical computation  |c 5. Machine learning basics  |b II. Deep networks : modern practices  |c 6. Deep feedforward networks  |c 7. Regularization for deep learning  |c 8. Optimization for training deep models  |c 9. Convolutional networks  |c 10. Sequence modeling : recurrent and recursive nets  |c 11. Practical methodology  |c 12. Applications  |b III. Deep learning research  |c 13. Linear factor models  |c 14. Autoencoders  |c 15. Representation learning  |c 16. Structured probabilistic models for deep learning  |c 17. Monte Carlo methods  |c 18. Confronting the partition function  |c 19. Approximate inference  |c 20. Deep generative models 
410 | |0 059294868  |t Adaptative computation and machine learning series 
452 | |0 25087847X  |t Deep learning  |f Ian Goodfellow, Yoshua Bengio and Aaron Courville  |d 2016  |c Cambridge, Massachusetts  |n The MIT Press  |p 1 online resource (xxii, 775 pages)  |s Adaptive computation and machine learning  |y 978-0-262-33737-3 
606 |3 PPN027940373  |a Apprentissage automatique  |2 rameau 
606 |3 PPN223540633  |a Apprentissage profond  |2 rameau 
606 |3 PPN027551385  |a Modèles mathématiques  |2 rameau 
606 |3 PPN027234541  |a Intelligence artificielle  |2 rameau 
606 |3 PPN027390896  |a Analyse multivariée  |2 rameau 
676 |a 006.31  |v 23 
680 |a Q325.5 
686 |a 68-02  |c 2000  |2 msc 
686 |a 62-02  |c 2000  |2 msc 
686 |a 62H25  |c 2000  |2 msc 
686 |a 62H99  |c 2000  |2 msc 
686 |a 68T05  |c 2000  |2 msc 
700 1 |3 PPN197683134  |a Goodfellow  |b Ian J.  |f 1987-....  |4 070 
701 1 |3 PPN166731285  |a Bengio  |b Yoshua  |f 1964-....  |4 070 
701 1 |3 PPN197683223  |a Courville  |b Aaron C.  |f 19..-....  |4 070 
801 3 |a FR  |b Abes  |c 20230418  |g AFNOR 
979 |a STN 
979 |a CCFA 
930 |5 441092306:591207028  |b 441092306  |a DR 471  |j g 
930 |5 441092104:611595605  |b 441092104  |j u 
930 |5 441842101:615300898  |b 441842101  |j u 
930 |5 441092208:639605494  |b 441092208  |j u 
915 |5 441092208:639605494  |b 22204 
991 |5 441092208:639605494  |a exemplaire créé automatiquement par l'ABES 
998 |a 785837