Singular spectrum analysis for time series

Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small numb...

Description complète

Détails bibliographiques
Auteurs principaux : Golyandina Nina (Auteur), Zhigljavsky Anatoly (Auteur)
Format : Livre
Langue : anglais
Titre complet : Singular spectrum analysis for time series / Nina Golyandina, Anatoly Zhigljavsky
Publié : Heidelberg [etc.] : Springer , C 2013
Description matérielle : 1 vol. (VII-119 p.)
Collection : SpringerBriefs in statistics (Print)
Contenu : Introduction: Preliminaries. SSA Methodology and the Structure of the Book. SSA Topics Outside the Scope of this Book. Common Symbols and Acronyms. Basic SSA: The Main Algorithm. Potential of Basic SSA. Models of Time Series and SSA Objectives. Choice of Parameters in Basic SSA. Some Variations of Basic SSA. SSA for Forecasting, interpolation, Filtration and Estimation: SSA Forecasting Algorithms. LRR and Associated Characteristic Polynomials. Recurrent Forecasting as Approximate Continuation. Confidence Bounds for the Forecast. Summary and Recommendations on Forecasting Parameters. Case Study: Fortified Wine. Missing Value Imputation. Subspace-Based Methods and Estimation of Signal Parameters. SSA and Filters
Sujets :
Documents associés : Autre format: Singular Spectrum Analysis for Time Series
LEADER 03505nam a2200457 4500
001 PPN249281732
003 http://www.sudoc.fr/249281732
005 20200924055700.0
010 |a 978-3-642-34912-6  |b br. 
073 1 |a 9783642349126 
100 |a 20200923d2013 k y0frey0103 ba 
101 0 |a eng 
102 |a DE 
105 |a a z 000yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 1 |6 z01  |a nga  |2 rdacarrier 
200 1 |a Singular spectrum analysis for time series  |f Nina Golyandina, Anatoly Zhigljavsky 
214 0 |a Heidelberg [etc.]  |c Springer 
214 4 |d C 2013 
215 |a 1 vol. (VII-119 p.)  |c couv. ill. en coul.  |d 24 cm 
225 2 |a Springer briefs in statistics 
320 |a Notes bibliogr. 
327 1 |a Introduction: Preliminaries  |a SSA Methodology and the Structure of the Book  |a SSA Topics Outside the Scope of this Book  |a Common Symbols and Acronyms  |a Basic SSA: The Main Algorithm  |a Potential of Basic SSA  |a Models of Time Series and SSA Objectives  |a Choice of Parameters in Basic SSA  |a Some Variations of Basic SSA  |a SSA for Forecasting, interpolation, Filtration and Estimation: SSA Forecasting Algorithms  |a LRR and Associated Characteristic Polynomials  |a Recurrent Forecasting as Approximate Continuation  |a Confidence Bounds for the Forecast  |a Summary and Recommendations on Forecasting Parameters  |a Case Study: Fortified Wine  |a Missing Value Imputation  |a Subspace-Based Methods and Estimation of Signal Parameters  |a SSA and Filters 
330 |a Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small number of interpretable components such as trend, oscillatory components and noise. It is based on the singular value decomposition of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity are assumed for the time series. This makes SSA a model-free method and hence enables SSA to have a very wide range of applicability. The present book is devoted to the methodology of SSA and shows how to use SSA both safely and with maximum effect. Potential readers of the book include: professional statisticians and econometricians, specialists in any discipline in which problems of time series analysis and forecasting occur, specialists in signal processing and those needed to extract signals from noisy data, and students taking courses on applied time series analysis 
410 | |0 166177075  |t SpringerBriefs in statistics (Print)  |x 2191-544X 
452 | |0 168327716  |t Singular Spectrum Analysis for Time Series  |f by Nina Golyandina, Anatoly Zhigljavsky.  |c Berlin, Heidelberg  |n Springer Berlin Heidelberg  |n Springer e-books  |n Imprint: Springer  |n Springer e-books  |d 2013  |s SpringerBriefs in Statistics  |y 978-3-642-34913-3 
606 |3 PPN027296539  |a Statistique mathématique  |2 rameau 
606 |3 PPN027241300  |a Processus stochastiques  |2 rameau 
686 |a 62-XX  |c 62MXX  |c 62M10  |2 msc 
686 |a 62-XX  |c 62MXX  |c 62M15  |2 msc 
686 |a 62-XX  |c 62MXX  |c 62M20  |2 msc 
700 1 |3 PPN249283182  |a Golyandina  |b Nina  |f 19??-....  |4 070 
701 1 |3 PPN122264177  |a Zhigljavsky  |b Anatoly  |4 070 
801 3 |a FR  |b Abes  |c 20200923  |g AFNOR 
930 |5 441092208:674469755  |b 441092208  |j u 
979 |a CCFA 
998 |a 874316