Linear systems of wave equations on cosmological backgrounds with convergent asymptotics

The subject of the article is linear systems of wave equations on cosmological backgrounds with convergent asymptotics. The condition of convergence corresponds to the requirement that the second fundamental form, when suitably normalised, converges. The model examples are the Kasner solutions. The...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal : Ringström Hans (Auteur)
Format : Livre
Langue : anglais
Titre complet : Linear systems of wave equations on cosmological backgrounds with convergent asymptotics / Hans Ringström
Publié : Paris : Société mathématique de France , 2020
Description matérielle : 1 vol. (XI-510 p.)
Collection : Astérisque ; 420
Sujets :
LEADER 03477cam a2200469 4500
001 PPN250137321
003 http://www.sudoc.fr/250137321
005 20201106060700.0
010 |a 978-2-85629-926-5  |b br. 
035 |a (OCoLC)1202737540 
073 1 |a 9782856299265 
100 |a 20201103h20202020k y0frey0103 ba 
101 0 |a eng 
102 |a FR 
105 |a y a 000yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 1 |6 z01  |a nga  |2 rdacarrier 
200 1 |a Linear systems of wave equations on cosmological backgrounds with convergent asymptotics  |f Hans Ringström 
214 0 |a Paris  |c Société mathématique de France  |d 2020 
215 |a 1 vol. (XI-510 p.)  |d 24 cm 
225 2 |a Astérisque  |x 0303-1179  |v 420 
320 |a Bibliogr. p. [507]-510 
330 |a The subject of the article is linear systems of wave equations on cosmological backgrounds with convergent asymptotics. The condition of convergence corresponds to the requirement that the second fundamental form, when suitably normalised, converges. The model examples are the Kasner solutions. The main result of the article is optimal energy estimates. However, we also derive asymptotics and demonstrate that the leading order asymptotics can be specified (also in situations where the asymptotics are not convergent). It is sometimes argued that if the factors multiplying the spatial derivatives decay exponentially (for a system of wave equations), then the spatial derivatives can be ignored. This line of reasoning is incorrect: we give examples of equations such that 1) the factors multiplying the spatial derivatives decay exponentially, 2) the factors multiplying the time derivatives are constants, 3) the energies of individual modes of solutions asymptotically decay exponentially, and 4) the energies of generic solutions grow as exp[exp(t)] as t->. When the factors multiplying the spatial derivatives grow exponentially, the Fourier modes of solutions oscillate with a frequency that grows exponentially. To obtain asymptotics, we fix a mode and consider the net evolution over one period. Moreover, we replace the evolution (over one period) with a matrix multiplication. We cannot calculate the matrices explicitly, but we approximate them. To obtain the asymptotics we need to calculate a matrix product where there is no bound on the number of factors, and where each factor can only be approximated. Nevertheless, we obtain detailed asymptotics. In fact, it is possible to isolate an overall behaviour (growth/decay) from the (increasingly violent) oscillatory behaviour. Moreover, we are also in a position to specify the leading order asymptotics. [4e de couv.] 
410 | |0 013566385  |t Astérisque  |x 0303-1179  |v 420 
606 |3 PPN027270351  |a Équations d'onde  |2 rameau 
606 |3 PPN027391299  |a Équations aux dérivées partielles  |x Théorie asymptotique  |2 rameau 
606 |3 PPN027673316  |a Équations différentielles hyperboliques  |2 rameau 
606 |3 PPN027289141  |a Convergence (mathématiques)  |2 rameau 
606 |3 PPN027231011  |a Cosmologie  |2 rameau 
686 |a 35L10  |c 2020  |2 msc 
686 |a 35L15  |c 2020  |2 msc 
686 |a 35Q75  |c 2020  |2 msc 
686 |a 53B30  |c 2020  |2 msc 
700 1 |3 PPN13648932X  |a Ringström  |b Hans  |f 1972-....  |4 070 
801 3 |a FR  |b Abes  |c 20201105  |g AFNOR 
930 |5 441092208:678379890  |b 441092208  |j u 
979 |a CCFA 
998 |a 878058