Aide à la décision multi-critères à base de connaissance pour la planification en fabrication auditive

Cette thèse présente une recherche sur le développement de stratégies pour la planification de processus en Fabrication Additive (FA). La recherche se compose de deux parties principales, l'étude théorique et l'étude de l'application. Dans la partie théorique, plusieurs méthodes ont é...

Description complète

Détails bibliographiques
Auteurs principaux : Zhang Yicha (Auteur), Bernard Alain (Directeur de thèse, Membre du jury), Kruth Jean-Pierre (Président du jury de soutenance, Membre du jury), Villeneuve François (Rapporteur de la thèse, Membre du jury), Coddet Christian (Rapporteur de la thèse, Membre du jury), Bourell David (Membre du jury), Mathieu Luc (Membre du jury), Bertrand Philippe (Membre du jury)
Collectivités auteurs : Centrale Nantes 1991-.... (Organisme de soutenance), École doctorale Sciences pour l'ingénieur, Géosciences, Architecture Nantes (Ecole doctorale associée à la thèse), Institut de recherche en communications et cybernétique Nantes 1958-2017 (Laboratoire associé à la thèse)
Format : Thèse ou mémoire
Langue : anglais
Titre complet : Aide à la décision multi-critères à base de connaissance pour la planification en fabrication auditive / Yicha Zhang; sous la direction de Alain Bernard
Publié : 2014
Description matérielle : 1 vol. (XXXVI-198 p.)
Note de thèse : Thèse de doctorat : Génie mécanique, productique transport : Ecole Centrale de Nantes : 2014
Sujets :
LEADER 08185cam a2200637 4500
001 PPN259224685
003 http://www.sudoc.fr/259224685
005 20240625055600.0
029 |a FR  |b 2014ECDN0019 
035 |a (OCoLC)1289755814 
100 |a 20211222d2014 k y0frey0103 ba 
101 0 |a eng  |d fre  |d eng  |2 639-2 
102 |a FR 
105 |a a ma 000yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 |6 z01  |a nga  |2 RDAfrCarrier 
200 1 |a Aide à la décision multi-critères à base de connaissance pour la planification en fabrication auditive  |f Yicha Zhang  |g sous la direction de Alain Bernard 
214 1 |d 2014 
215 |a 1 vol. (XXXVI-198 p.)  |c ill.  |d 30 cm 
314 |a Ecole(s) Doctorale(s) : École doctorale Sciences pour l'ingénieur, Géosciences, Architecture 
314 |a Partenaire(s) de recherche : Institut de recherche en communications et cybernétique de Nantes (IRCCyN) 
314 |a Autre(s) contribution(s) : Jean-Pierre Kruth (président du jury) ; François Villeneuve, Christian Coddet (rapporteurs) ; Alain Bernard, David Bourell, Luc Mathieu, Philippe Bertrand (membres du jury) 
320 |a Bibliogr. p. [200]-[213] 
328 0 |b Thèse de doctorat  |c Génie mécanique, productique transport  |e Ecole Centrale de Nantes  |d 2014 
330 |a Cette thèse présente une recherche sur le développement de stratégies pour la planification de processus en Fabrication Additive (FA). La recherche se compose de deux parties principales, l'étude théorique et l'étude de l'application. Dans la partie théorique, plusieurs méthodes ont été développées pour certaines questions clé de la planification systématique. Un modèle intégréest proposépour aider à la prise de décision. Puis, ce modèle est incorporé dans l'optimisation évolutive pour améliorer la performance de l algorithme génétique quand on l utilise pour résoudre les problèmes multi-objectifs. Pour la prédiction du temps de production, deux méthodes de modélisation sont proposées pour construire des modèles utilisés dans les contextes d une production mono-pièce et d une production multi-pièces. Pour améliorer la réutilisation des connaissances de production en FA, le concept d entitéde FA est défini et appliqué pour résoudre une tâche de planification, l'optimisation de l'orientation étant prise comme exemple. Pour faciliter d'autres tâches de planification de processus qui ont une caractéristique combinatoire, la technologie de groupe couramment utilisée par les procédés traditionnels est modifiée et proposée pour le regroupement des pièces. Fondée sur l'étude théorique, une étude de l'application est réalisée pour traiter le problème de la planification de processus dans un contexte de production multi-pièces. Une méthode systématique à base d entités de FA et de connaissance est développée dans le cadre de la planification proposée. Les tâches de planification sont identifiées et chacune d'elles est résolue par une méthode conçue spécifiquement. Certaines tâches ont déjà été mises en œuvre dans la partie théorique comme des études de cas ou des exemples illustratifs. Les méthodes proposées pour deux tâches clé, l'optimisation de l'orientation dans le contexte de production multi-pièces et la nidification bi-dimensionnelle pour augmenter la compacité de l espace occupé sur la machine, sont élaborées et mises en œuvre sur la plate-forme Matlab. En raison de la complexité du problème de planification de traitement, cette recherche ne peut pas résoudre tous les problèmes. De nouvelles recherches doivent être réalisées dans le futur. 
330 |a This dissertation presents a research on developing a feature and knowledge based systematic process planning for Additive Manufacturing (AM). The whole research is composed by two core parts, theoretical study and application study. In the theoretical part, several methodologies were developed under a proposed systematic process planning ramework to deal with some of the key issues of systematic process planning in AM. An integrated Multi-attribute decision making (MADM) model, which contains two sub models using distance metric and similarity metric for evaluating alternatives, is developed to solve the decision making issue of process planning in AM. Then, this developed model is used to develop an improved evolutionary optimization method for solving the Multi-objective or Many-objective optimization problems that usually are variants of classical combinatorial problems and have characteristics of NP-complete or NP-hard by conducting an embedding. For the prediction issue of process planning in AM, this research proposed two modeling methodologies for developing build time estimation models in both single part production and Multi-part production contexts. To enhance the reuse of AM production knowledge, AM feature is defined and applied for solving orientation optimization planning task for AM process planning. Since many of the planning tasks have Multi-attribute decision making and combinatorial characteristics in Multi-part production context, a modified group technology is proposed for grouping or clustering parts to facilitate some process planning tasks, especially in the Multi-part production context. The nesting problem of process planning in the Multi-part production context investigated in the application study part testified the impact of part clusters on the nesting efficiency and compactness.Based on the theoretical study, an application study is carried out for dealing with the process planning problem in Multi-part production context. An AM feature and knowledge based systematic process planning strategy is developed under the proposed process planning framework. The specific planning tasks are identified and each of them is solved by a designed method. Some of tasks were already implemented in the theoretical study part as case studies or illustrative examples. Two key tasks, Multi-part orientation and 2-Dimensional nesting, are solved and implemented respectively on the Matlab platform at the end of this VII application study part as demonstration examples. The proposed strategy has a possibility of being commercialized. Due to the complexity of process planning problem, though a comprehensive investigation is conducted, this research can only solve a part of limited problems. However, it opens many doors for future research activities according to its findings and expectations or perspectives. 
541 | |a Feature and knowledge based systematic process planning for additive manufacturing  |z eng 
606 |3 PPN050230824  |a Prototypage rapide  |2 rameau 
606 |3 PPN027466655  |a Prise de décision  |2 rameau 
608 |3 PPN027253139  |a Thèses et écrits académiques  |2 rameau 
610 0 |a Entité 
610 0 |a Connaissance 
610 0 |a Prise de décision & d'optimisation 
610 0 |a Contexte de production multi-pièces 
610 0 |a Planification de processus 
610 0 |a Fabrication additive 
686 |a 620  |2 TEF 
700 1 |3 PPN259226203  |a Zhang  |b Yicha  |f 1985-....  |4 070 
701 1 |3 PPN035716290  |a Bernard  |b Alain  |f 1959-....  |c auteur en génie industriel  |4 727  |4 555 
701 1 |3 PPN25922622X  |a Kruth  |b Jean-Pierre  |4 956  |4 555 
701 1 |3 PPN070159092  |a Villeneuve  |b François  |f 1960-....  |4 958  |4 555 
701 1 |3 PPN085227080  |a Coddet  |b Christian  |f 19..-....  |4 958  |4 555 
701 1 |3 PPN259226270  |a Bourell  |b David  |4 555 
701 1 |3 PPN189501227  |a Mathieu  |b Luc  |f 19..-....  |c auteur en génie mécanique  |4 555 
701 1 |3 PPN184305454  |a Bertrand  |b Philippe  |f 1970-....  |c physicien  |4 555 
711 0 2 |3 PPN03063525X  |a Centrale Nantes  |c 1991-....  |4 295 
711 0 2 |3 PPN128696265  |a École doctorale Sciences pour l'ingénieur, Géosciences, Architecture  |c Nantes  |4 996 
711 0 2 |3 PPN113164726  |a Institut de recherche en communications et cybernétique  |c Nantes  |f 1958-2017  |4 981 
801 3 |a FR  |b Abes  |c 20230327  |g AFNOR 
979 |a ECN 
930 |5 441092306:713901640  |b 441092306  |a Th. 2519  |j u 
998 |a 910738