Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry

In recent years it has been noted that a number of combinatorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux : Margolis Stuart (Auteur), Saliola Franco (Auteur), Steinberg Benjamin (Auteur)
Format : Livre
Langue : anglais
Titre complet : Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry / Stuart Margolis, Franco V. Saliola, Benjamin Steinberg
Publié : Providence, RI : American Mathematical Society , C 2021
Description matérielle : 1 vol. (XI-135 p.)
Collection : Memoirs of the American Mathematical Society ; 1345
Sujets :
LEADER 03940nam a2200613 4500
001 PPN26109355X
003 http://www.sudoc.fr/26109355X
005 20220325055900.0
010 |a 978-1-4704-5042-7 
035 |a on1285573241 
035 |z ocm1285492025 
035 |z ocm1285569803 
073 1 |a 9781470450427 
100 |a 20220321h20212021k y0frey0103 ba 
101 0 |a eng 
102 |a US 
105 |a a a 001yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 |6 z01  |a nga  |2 rdamedia 
200 1 |a Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry  |f Stuart Margolis, Franco V. Saliola, Benjamin Steinberg 
214 0 |a Providence, RI  |c American Mathematical Society 
214 4 |d C 2021 
215 |a 1 vol. (XI-135 p.)  |c fig.  |d 26 cm 
225 0 |a Memoirs of the American Mathematical Society  |x 0065-9266  |v number 1345 
305 |a November 2021, volume 274, number 1345 (third of 4 numbers) 
320 |a Bibliographie p. 123-128. Index 
330 |a In recent years it has been noted that a number of combinatorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting Markov chains such as the Tsetlin library and riffle shuffle. The representation theory of left regular bands then comes into play and has had a major influence on both the combinatorics and the probability theory associated to such structures. In a recent paper, the authors established a close connection between algebraic and combinatorial invariants of a left regular band by showing that certain homological invariants of the algebra of a left regular band coincide with the cohomology of order complexes of posets naturally associated to the left regular band. The purpose of the present monograph is to further develop and deepen the connection between left regular bands and poset topology. This allows us to compute finite projective resolutions of all simple modules of unital left regular band algebras over fields and much more. In the process, we are led to define the class of CW left regular bands as the class of left regular bands whose associated posets are the face posets of regular CW complexes. Most of the examples that have arisen in the literature belong to this class. A new and important class of examples is a left regular band structure on the face poset of a CAT(0) cube complex. Also, the recently introduced notion of a COM (complex of oriented matroids or conditional oriented matroid) fits nicely into our setting and includes CAT(0) cube complexes and certain more general CAT(0) zonotopal complexes. A fairly complete picture of the representation theory for CW left regular bands is obtained.  |2 Abstract p. V-VI 
410 | |0 013293931  |t Memoirs of the American Mathematical Society  |x 0065-9266  |v 1345 
606 |3 PPN02742619X  |a Analyse combinatoire  |2 rameau 
606 |3 PPN027718158  |a Géométrie combinatoire  |2 rameau 
606 |3 PPN029492211  |a Représentations d'algèbres  |2 rameau 
680 |a QA3  |b .A57 no.1345 
686 |a 20M30  |c 2020  |2 msc 
686 |a 16G10  |c 2020  |2 msc 
686 |a 05E10  |c 2020  |2 msc 
686 |a 52C35  |c 2020  |2 msc 
686 |a 52C40  |c 2020  |2 msc 
686 |a 16S37  |c 2020  |2 msc 
686 |a 20M25  |c 2020  |2 msc 
686 |a 52B05  |c 2020  |2 msc 
686 |a 16E10  |c 2020  |2 msc 
700 1 |3 PPN195962338  |a Margolis  |b Stuart  |4 070 
701 1 |3 PPN177120495  |a Saliola  |b Franco  |4 070 
701 1 |3 PPN08318273X  |a Steinberg  |b Benjamin  |4 070 
801 3 |a FR  |b Abes  |c 20220321  |g AFNOR 
801 0 |b YDX  |g AACR2 
801 2 |b BUB  |g AACR2 
930 |5 441092208:722641834  |b 441092208  |j u 
979 |a CCFA 
998 |a 924062