Lie methods in deformation theory

This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deform...

Description complète

Détails bibliographiques
Auteur principal : Manetti Marco (Auteur)
Format : Livre
Langue : anglais
Titre complet : Lie methods in deformation theory / Marco Manetti
Publié : Singapore : Springer Nature Singapore , C 2022
Description matérielle : 1 volume (XII, 574 p.)
Collection : Springer monographs in mathematics
Sujets :
Documents associés : Autre format: Lie Methods in Deformation Theory
Autre format: Lie Methods in Deformation Theory
Autre format: Lie Methods in Deformation Theory
LEADER 04066cam a2200565 4500
001 PPN264523717
003 http://www.sudoc.fr/264523717
005 20240628055600.0
010 |a 978-981-19-1184-2  |b rel. 
035 |a (OCoLC)1350793993 
073 1 |a 9789811911842 
100 |a 20220921h20222022k y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a SG 
105 |a a a 001yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 |6 z01  |a nga  |2 RDAfrCarrier 
200 1 |a Lie methods in deformation theory  |f Marco Manetti 
214 0 |a Singapore  |c Springer Nature Singapore 
214 4 |d C 2022 
215 |a 1 volume (XII, 574 p.)  |c ill.  |d 25 cm 
225 2 |a Springer monographs in mathematics 
320 |a Bibliogr. p. 559-568. Index 
330 |a This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deformation theory is an important subject in algebra and algebraic geometry, with an origin that dates back to Kodaira, Spencer, Kuranishi, Gerstenhaber, and Grothendieck. In the last 30 years, a new approach, based on ideas from rational homotopy theory, has made it possible not only to solve long-standing open problems, but also to clarify the general theory and to relate apparently different features. This approach works over a field of characteristic 0, and the central role is played by the notions of differential graded Lie algebra, L-infinity algebra, and Maurer-Cartan equations. The book is written keeping in mind graduate students with a basic knowledge of homological algebra and complex algebraic geometry as utilized, for instance, in the book by K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Although the main applications in this book concern deformation theory of complex manifolds, vector bundles, and holomorphic maps, the underlying algebraic theory also applies to a wider class of deformation problems, and it is a prerequisite for anyone interested in derived deformation theory. Researchers in algebra, algebraic geometry, algebraic topology, deformation theory, and noncommutative geometry are the major targets for the book.  |2 4ème de couv. 
359 2 |b 1. An Overview of Deformation Theory of Complex Manifolds  |b 2. Lie Algebras  |b 3. Functors of Artin Rings  |b 4. Infinitesimal Deformations of Complex Manifolds and Vector Bundles  |b 5. Differential Graded Lie Algebras  |b 6. Maurer-Cartan Equation and Deligne Groupoids  |b 7. Totalization and Descent of Deligne Groupoids  |b 8. Deformations of Complex Manifolds and Holomorphic Maps  |b 9. Poisson, Gerstenhaber and Batalin-Vilkovisky Algebras  |b 10. L1-algebras  |b 11. Coalgebras and Coderivations  |b 12. L1-morphisms  |b 13. Formal Kuranishi Families and Period Maps  |b References. 
410 | |0 050911260  |t Springer monographs in mathematics  |x 1439-7382 
452 | |0 264191722  |t Lie Methods in Deformation Theory  |f by Marco Manetti  |e 1st ed. 2022.  |d 2022  |c Singapore  |n Springer Nature Singapore  |s Springer Monographs in Mathematics  |y 978-981-19118-5-9 
452 | |t Lie Methods in Deformation Theory  |y 9789811911866 
452 | |t Lie Methods in Deformation Theory  |y 9789811911873 
606 |3 PPN027836703  |a Algèbre homologique  |2 rameau 
610 1 |a Category Theory  |a Homological Algebra 
610 2 |a Commutative Rings and Algebras 
610 2 |a Differential Geometry 
615 |a Mathematics and Statistics  |n 11649  |2 Springer 
676 |a 512.6  |v 23 
680 |a QA169 
686 |a 32Gxx  |v 2020  |2 msc 
686 |a 14D06  |v 2020  |2 msc 
686 |a 17Bxx  |v 2020  |2 msc 
686 |a 18G80  |v 2020  |2 msc 
686 |a 53D17  |v 2020  |2 msc 
700 1 |3 PPN127225250  |a Manetti  |b Marco  |f 1966-....  |4 070 
801 3 |a FR  |b Abes  |c 20240627  |g AFNOR 
930 |5 441092208:825787904  |b 441092208  |j u 
979 |a CCFA 
998 |a 972535