Archimedean zeta integrals for GL(3) x GL(2)
In this article, we give explicit formulas of archimedean Whittaker functions on GL(3) and GL(2). Moreover, we apply those to the calculation of archimedean zeta integrals for GL(3) x GL(2), and show that the zeta integral for appropriate Whittaker functions is equal to the associated L-factors
Auteurs principaux : | , , |
---|---|
Format : | Livre |
Langue : | anglais |
Titre complet : | Archimedean zeta integrals for GL(3) x GL(2) / Miki Hirano, Taku Ishii, Tadashi Miyazaki |
Publié : |
Providence (R.I.) :
American Mathematical Society
, C 2022 |
Description matérielle : | 1 vol. (VIII-122 p.) |
Collection : | Memoirs of the American Mathematical Society ; 1366 |
Sujets : |
- Basic objects
- Preliminaries for GL(n, R)
- Whittaker functions on GL(2, R)
- Whittaker functions on GL(3, R)
- Preliminaries for GL(n, C)
- Whittaker functions on GL(2, C)
- Whittaker functions on GL(3, C)
- Preliminaries
- The local zeta integrals for GL(3, R) x GL(2, R)
- The local zeta integrals for GL(3, C) x GL(2, C)