Gromov's theory of multicomplexes with applications to bounded cohomology and simplicial volume

The simplicial volume is a homotopy invariant of manifolds introduced by Gromov in his pioneering paper Volume and bounded cohomology. In order to study the main properties of simplicial volume, Gromov himself initiated the dual theory of bounded cohomology, which then developed into a very active a...

Description complète

Détails bibliographiques
Auteur principal : Frigerio Roberto (Auteur)
Autres auteurs : Moraschini Marco (Auteur)
Format : Livre
Langue : anglais
Titre complet : Gromov's theory of multicomplexes with applications to bounded cohomology and simplicial volume / Roberto Frigerio, Marco Moraschini
Publié : Providence (R.I.) : AMS, American Mathematical Society , 2023
Description matérielle : 1 vol. (VI-153 p.)
Collection : Memoirs of the American Mathematical Society ; 1402
Sujets :
Documents associés : Autre format: Gromov's theory of multicomplexes with applications to bounded cohomology and simplicial volume
LEADER 04298cam a2200565 4500
001 PPN269915214
003 http://www.sudoc.fr/269915214
005 20230526055600.0
010 |a 978-1-4704-5991-8  |b br. 
010 |a 1-4704-5991-4 
035 |a on1372296739 
073 1 |a 9781470459918  |b br. 
100 |a 20230516h20232023k y0frey0103 ba 
101 0 |a eng  |2 639-2 
102 |a US 
105 |a a a 000yy 
106 |a r 
181 |6 z01  |c txt  |2 rdacontent 
181 1 |6 z01  |a i#  |b xxxe## 
182 |6 z01  |c n  |2 rdamedia 
182 1 |6 z01  |a n 
183 |6 z01  |a nga  |2 RDAfrCarrier 
200 1 |a Gromov's theory of multicomplexes with applications to bounded cohomology and simplicial volume  |f Roberto Frigerio, Marco Moraschini 
214 0 |a Providence (R.I.)  |c AMS, American Mathematical Society  |d 2023 
215 |a 1 vol. (VI-153 p.)  |c illustrations  |d 26 cm 
225 0 |a Memoirs of the American Mathematical Society  |x 0065-9266  |v 1402 
300 |a "March 2023, volume 283, number 1402 (fifth of 7 numbers)" 
320 |a Bibliogr. p.149-153, 102 réf. 
330 |a The simplicial volume is a homotopy invariant of manifolds introduced by Gromov in his pioneering paper Volume and bounded cohomology. In order to study the main properties of simplicial volume, Gromov himself initiated the dual theory of bounded cohomology, which then developed into a very active and independent research field. Gromov's theory of bounded cohomology of topological spaces was based on the use of multicomplexes, which are simplicial structures that generalize simplicial complexes without allowing all the degeneracies appearing in simplicial sets. The first aim of this paper is to lay the foundation of the theory of multicomplexes. After setting the main definitions, we construct the singular multicomplex K(X) associated to a topological space X, and we prove that the geometric realization of K(X) is homotopy equivalent to X for every CW complex X. Following Gromov, we introduce the notion of completeness, which, roughly speaking, translates into the context of multicomplexes the Kan condition for simplicial sets. We then develop the homotopy theory of complete multicomplexes, and we show that K(X) is complete for every CW complex X. In the second part of this work we apply the theory of multicomplexes to the study of the bounded cohomology of topological spaces. Our constructions and arguments culminate in the complete proofs of Gromov's Mapping Theorem (which implies in particular that the bounded cohomology of a space only depends on its fundamental group) and of Gromov's Vanishing Theorem, which ensures the vanishing of the simplicial volume of closed manifolds admitting an amenable cover of small multiplicity--Abstract, pg. v 
359 2 |b Introduction  |b Part 1. The General Theory of Multicomplexes : Chapter 1. Multicomplexes  |b Chapter 2. The Singular Multicomplex  |b Chapter 3. The Homotopy Theory of Complete Multicomplexes  |b Part 2. Multicomplexes, Bounded Cohomology and Simplicial Volume : Chapter 4. Bounded Cohomology of Multicomplexes  |b Chapter 5. The Mapping Theorem  |b Chapter 6. The Vanishing Theorem  |b Part 3. The Simplicial Volume of Open Manifolds : Chapter 7. Finiteness and Vanishing Theorems  |b Chapter 8. Diffusion of Chains  |b Chapter 9. Admissible Submulticomplexes of K(X)  |b Chapter 10. Diffusion of Locally Finite Chains  |b Chapter 11. Some Results on the Simplicial Volume  |b Bibliography 
410 | |0 013293931  |t Memoirs of the American Mathematical Society  |x 0065-9266  |v 1402 
452 | |t Gromov's theory of multicomplexes with applications to bounded cohomology and simplicial volume  |y 978-1-4704-7403-4 
606 |3 PPN031488986  |a Groupes d'homotopie  |2 rameau 
680 |a QA3  |b .A57 no. 1402 
686 |a 55N10  |c 2020  |2 msc 
686 |a 55U10  |c 2020  |2 msc 
686 |a 57N65  |c 2020  |2 msc 
686 |a 57R19  |c 2020  |2 msc 
686 |a 20J06  |c 2020  |2 msc 
686 |a 43A07  |c 2020  |2 msc 
686 |a 53C23  |c 2020  |2 msc 
686 |a 55Q05  |c 2020  |2 msc 
686 |a 57Q05  |c 2020  |2 msc 
700 1 |3 PPN190040491  |a Frigerio  |b Roberto  |f 1977-....  |4 070 
702 1 |3 PPN26660434X  |a Moraschini  |b Marco  |4 070 
801 3 |a FR  |b Abes  |c 20230525  |g AFNOR 
801 0 |b EAU  |g AACR2 
930 |5 441092208:789953625  |b 441092208  |j u 
979 |a CCFA 
998 |a 943371