Introduction to Singularities and Deformations

Singularity theory is a field of intensive study in modern mathematics with fascinating relations to algebraic geometry, complex analysis, commutative algebra, representation theory, theory of Lie groups, topology, dynamical systems, and many more, and with numerous applications in the natural and t...

Description complète

Détails bibliographiques
Auteurs principaux : Greuel Gert-Martin (Auteur), Lossen Christoph (Auteur), Shustin Eugenii (Auteur)
Format : Livre
Langue : anglais
Titre complet : Introduction to Singularities and Deformations / G-M. Greuel, C. Lossen, E. Shustin.
Édition : 1st ed. 2007.
Publié : Berlin, Heidelberg : Springer Berlin Heidelberg , [20..]
Cham : Springer Nature
Collection : Springer monographs in mathematics (Internet)
Accès en ligne : Accès Nantes Université
Accès direct soit depuis les campus via le réseau ou le wifi eduroam soit à distance avec un compte @etu.univ-nantes.fr ou @univ-nantes.fr
Note sur l'URL : Accès sur la plateforme de l'éditeur
Accès sur la plateforme Istex
Condition d'utilisation et de reproduction : Conditions particulières de réutilisation pour les bénéficiaires des licences nationales : https://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
Contenu : I. Singularity Theory. Basic Properties of Complex Spaces and Germs. Weierstrass Preparation and Finiteness Theorem. Application to Analytic Algebras. Complex Spaces. Complex Space Germs and Singularities. Finite Morphisms and Finite Coherence Theorem. Applications of the Finite Coherence Theorem. Finite Morphisms and Flatness. Flat Morphisms and Fibres. Singular Locus and Differential Forms. Hypersurface Singularities. Invariants of Hypersurface Singularities. Finite Determinacy. Algebraic Group Actions. Classification of Simple Singularities. Plane Curve Singularities. Parametrization. Intersection Multiplicity. Resolution of Plane Curve Singularities. Classical Topological and Analytic Invariants. II. Local Deformation Theory. Deformations of Complex Space Germs. Deformations of Singularities. Embedded Deformations. Versal Deformations. Infinitesimal Deformations. Obstructions. Equisingular Deformations of Plane Curve Singularities. Equisingular Deformations of the Equation. The Equisingularity Ideal. Deformations of the Parametrization. Computation of T^1 and T^2 . Equisingular Deformations of the Parametrization. Equinormalizable Deformations. Versal Equisingular Deformations. Appendices: Sheaves. Commutative Algebra. Formal Deformation Theory. Literature. Index
Sujets :
Documents associés : Autre format: Introduction to singularities and deformations
Autre format: Introduction to Singularities and Deformations
Autre format: Introduction to singularities and deformations
Autre format: Introduction to singularities and deformations