Nouvelles paramétrisations de réseaux bayésiens et leur estimation implicite : famille exponentielle naturelle et mélange infini de Gaussiennes

L apprentissage d un réseau Bayésien consiste à estimer le graphe (la structure) et les paramètres des distributions de probabilités conditionnelles associées à ce graphe. Les algorithmes d apprentissage de réseaux Bayésiens utilisent en pratique une approche Bayésienne classique d estimation a post...

Description complète

Détails bibliographiques
Auteurs principaux : Jarraya Siala Aida (Auteur), Leray Philippe (Directeur de thèse), Masmoudi Afif (Directeur de thèse)
Collectivités auteurs : Université de Nantes 1962-2021 (Organisme de soutenance), Université de Nantes Faculté des sciences et des techniques (Autre partenaire associé à la thèse), École doctorale Sciences et technologies de l'information et mathématiques Nantes (Organisme de soutenance)
Format : Thèse ou mémoire
Langue : français
Titre complet : Nouvelles paramétrisations de réseaux bayésiens et leur estimation implicite : famille exponentielle naturelle et mélange infini de Gaussiennes / Adeel Anjum; sous la direction de Philippe Leray, Alif Masmoudi
Publié : [S.l.] : [s.n.] , 2013
Description matérielle : 1 vol. (93 p.)
Condition d'utilisation et de reproduction : Publication autorisée par le jury
Note de thèse : Thèse de doctorat : Informatique : Nantes : 2013
Sujets :
Documents associés : Reproduit comme: Nouvelles paramétrisations de réseaux bayésiens et leur estimation implicite
Particularités de l'exemplaire : BU Sciences, Ex. 1 :
Titre temporairement indisponible à la communication


BU Sciences

Informations d'exemplaires de BU Sciences
Cote Prêt Statut
Communication impossible 2013 NANT 2042 Empruntable Disponible
Communication impossible 2013 NANT 2042 Exclu du prêt disponible