Dynamic Control and Singularities of Rigid Bearing-Based Formations of Quadrotors
Le contrôle des formations basées sur les bearings (direction relative à l observateur) permettent aux flottes de quadrirotors de se déplacer vers une géométrie désirée, en utilisant des mesures extraites de caméras embarquées. Des travaux antérieurs ont traité les quadrirotors comme des intégrateur...
Auteurs principaux : | , , , , , , , |
---|---|
Collectivités auteurs : | , , |
Format : | Thèse ou mémoire |
Langue : | anglais |
Titre complet : | Dynamic Control and Singularities of Rigid Bearing-Based Formations of Quadrotors / Julian Erskine; sous la direction de Isabelle Fantoni-Coichot et de Abdelhamid Chriette |
Publié : |
2021 |
Accès en ligne : |
Accès Nantes Université
|
Note sur l'URL : | Accès au texte intégral |
Note de thèse : | Thèse de doctorat : Automatique, Productique et Robotique : Ecole centrale de Nantes : 2021 |
Sujets : |
Résumé : | Le contrôle des formations basées sur les bearings (direction relative à l observateur) permettent aux flottes de quadrirotors de se déplacer vers une géométrie désirée, en utilisant des mesures extraites de caméras embarquées. Des travaux antérieurs ont traité les quadrirotors comme des intégrateurs, et donc la formation doit ralentir de manière à compenser les non-linéarités non modélisées. Cette thèse a pour objectif d atteindre des formations rapides en tenant compte des dynamiques non-linéaires du quadrirotor et des mesures visuelles. Deux contrôleurs sont développés, à savoir un contrôleur basé sur un asservissement visuel dynamique et une commande prédictive, montrant des performances améliorées avec des contraintes réelles. Toutes les formations basées sur des bearings dépendent d un degré suffisant de rigidité. Bien que celui-ci puisse être évalué numériquement, la rigidité est une fonction de la position de tous les robots dans la flotte. Ceci étant, les travaux précédents ne pouvaient pas garantir la rigidité pour des formations plus larges que quelques robots. La deuxième contribution de cette thèse est l évaluation des géométries singulières où une certaine formation rigide devient flexible. Ceci mène à un système de classification basé sur des contractions d ensembles de contraintes, qui permet d identifier les géométries singulières pour des grandes formations afin de garantir la rigidité. Bearing formation control allows groups of quadrotors to manoeuver in a desired geometry, using only visual measurements extractable from embedded monocular cameras. Prior works have treated quadrotors as single or double integrators, and as a result must operate slowly to compensate for unmodelled non-linearities. This thesis allows for faster bearing formations by developping higher-order controllers, considering the non-linear quadrotor and visual feature dynamics. A dynamic feedback controller based on second-order visual servoing and a model predictive controller are developped and tested in simulation and experiments, showing improved dynamic manoeuvering performance. The later is augmented with constraints such as field of view limitations and obstacle avoidance. All bearing formation algorithms depend on a sufficient degree of bearing rigidity to guarantee performance. This may be evaluated numerically, but as the rigidity is a function of the formation embedding, previous work could not guarantee rigidity in formations larger than a few robots. The second main contribution of this thesis is the evaluation of bearing rigidity singularities (i.e. embeddings where an otherwise rigid formation becomes flexible) by applying existing geometric analysis methods on an kinematic mechanism which is analoguous to the kinematic constraints imposed by the formation controller and robot models. This is extended to a novel classification system based on a contraction of constraint sets that can determine singular geometries for large formations, allowing for a formulation of a set of guaranteed rigid configurations without an ad-hoc kinematic analysis of individual formations. |
---|---|
Variantes de titre : | Commande dynamique et singularités des formations de quadrirotors basées sur des bearings |
Notes : | Titre provenant de l'écran-titre Ecole(s) Doctorale(s) : École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes) Partenaire(s) de recherche : Laboratoire des Sciences du Numérique de Nantes (Laboratoire) Autre(s) contribution(s) : Paolo Robuffo Giordano (Président du jury) ; Isabelle Fantoni-Coichot, Abdelhamid Chriette, Paolo Robuffo Giordano, Antonio Franchi, Guillaume Allibert, Ouiddad Labbani-Igbida, Sébastien Briot (Membre(s) du jury) ; Antonio Franchi, Guillaume Allibert (Rapporteur(s)) |
Configuration requise : | Configuration requise : un logiciel capable de lire un fichier au format : PDF |